Atom-by-atom nucleation and growth of graphene nanopores
نویسندگان
چکیده
منابع مشابه
Atom-by-atom nucleation and growth of graphene nanopores.
Graphene is an ideal thin membrane substrate for creating molecule-scale devices. Here we demonstrate a scalable method for creating extremely small structures in graphene with atomic precision. It consists of inducing defect nucleation centers with energetic ions, followed by edge-selective electron recoil sputtering. As a first application, we create graphene nanopores with radii as small as ...
متن کاملAtom-by-atom observation of grain boundary migration in graphene.
Grain boundary (GB) migration in polycrystalline solids is a materials science manifestation of survival of the fittest, with adjacent grains competing to add atoms to their outer surfaces at each other's expense. This process is thermodynamically favored when it lowers the total GB area in the sample, thereby reducing the excess free energy contributed by the boundaries. In this picture, a cur...
متن کاملElectrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom.
Ultrathin nanopore membranes based on 2D materials have demonstrated ultimate resolution toward DNA sequencing. Among them, molybdenum disulfide (MoS2) shows long-term stability as well as superior sensitivity enabling high throughput performance. The traditional method of fabricating nanopores with nanometer precision is based on the use of focused electron beams in transmission electron micro...
متن کاملSubstrate Dependent Ad-Atom Migration on Graphene and the Impact on Electron-Beam Sculpting Functional Nanopores
The use of atomically thin graphene for molecular sensing has attracted tremendous attention over the years and, in some instances, could displace the use of classical thin films. For nanopore sensing, graphene must be suspended over an aperture so that a single pore can be formed in the free-standing region. Nanopores are typically drilled using an electron beam (e-beam) which is tightly focus...
متن کاملSuperlattice of Single Atom Magnets on Graphene.
Regular arrays of single atoms with stable magnetization represent the ultimate limit of ultrahigh density storage media. Here we report a self-assembled superlattice of individual and noninteracting Dy atoms on graphene grown on Ir(111), with magnetic hysteresis up to 5.6 T and spin lifetime of 1000 s at 2.5 K. The observed magnetic stability is a consequence of the intrinsic low electron and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2012
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1119827109